1 (a) Fig. 3.1 shows the path taken by an aircraft as it flies from A to

Fig. 3.1

On Fig. 3.1, a distance of 1.0 cm represents a distance of 50 km travelled by the aircraft. The aircraft takes 25 minutes to travel from **A** to **B**.

(i) Use Fig. 3.1 to determine the magnitude of the average velocity of the aircraft as it travels from **A** to **B**.

	• •	
(ii)	Without doing any calculations, explain why the average speed of the aircraft is not same as the magnitude of its average velocity.	the

.....[1]

average velocity = ms^{-1} [3]

))		s one of the many moons of Jupiter. It travels at constant speed around Jupiter in a circular t of radius 4.2 × 10 ⁸ m. Io takes 1.5 × 10 ⁵ s to orbit once around Jupiter.
	(i)	Calculate the speed of lo in its orbit.
		speed = ms ⁻¹ [2]
	(ii)	lo has several active volcanoes on its surface. One of these volcanoes produces jets of sulphur with a velocity of 1.3 km s ⁻¹ that rise to 470 km above the volcano.
		Calculate the constant acceleration of free fall on the surface of lo.
		acceleration = ms ⁻² [3]

2 (a) Fig. 7.1 shows several forces acting on an object that is free to

Fig. 7.1

Using simple calculations, deduce whether the object will move into region 1, 2, 3 or 4. Briefly explain your reasoning.

		••••
		[2
(b)	State the <i>principle of moments</i> .	
		[1 ⁻

(c) Fig. 7.2 shows the forces acting on a suitcase with wheels as it is held stationary.

Fig. 7.2

A vertical force of $50\,\mathrm{N}$ is applied to the top of the handle in order to keep the suitcase stationary in the position shown in Fig. 7.2. The line of action of this force acts at a perpendicular distance of 46 cm from **P**, the point of contact with the ground. The line of action of the weight of the suitcase acts at a perpendicular distance of $32\,\mathrm{cm}$ from the top of the handle.

By taking moments about \mathbf{P} , calculate the mass m of the suitcase.

$$m = \dots kg [3]$$

[Total: 6]

(b)	Circle all the	vector qua	antities i	in the	list be	low.										
	accele	er ation	spee	ed									e	ight	t	[1]
(c)	Fig. 1.1 showstraight level	ws graphs road in th	of velo	city direc	v agair tion.	nst tin	ne t	for t	two	cars	s A	ar	nd I	B tr	ravelling a	along a
		26								+++				\Box		
		24-													A	
	v/ms ⁻¹	22-														
		22														
		20														
		18-														
		16-														
		14													В	
		14													В	
		12-														
		10														
		8-														
		6														
		6+	2		4			6			8	t	/s	1(0	
					Fig.	1.1										
	At time $t = 0$,	both cars	are sid	e-by-	side.											
	(i) Describe	e the motion	on of ca	r A fr	om <i>t</i> =	0 to <i>t</i>	= 10) s.								

		distance = m [2]
(iii)	Use	e Fig. 1.1 to find
	1	the time at which both cars have the same velocity
		time = s [1]
	2	the time <i>t</i> at which car A overtakes car B .
		t = s [2]
		[Total: 9]

(ii) Calculate the distance travelled by car A in the first 4.0 s.

4 (a) Fig. 5.1 shows a 20 N force acting at an angle of 38° to the horizontal.

Determine the horizontal and vertical components of this force.

(b) Fig. 5.2 shows a metal block held in equilibrium by two wires.

The tension in each wire is 20 N.

(i) Show that the weight W of the metal block is about 25 N.

(ii)	The metal block has a volume of $2.9 \times 10^{-4} \text{m}^3$. Calculate the density of the metal.
	density = kg m ⁻³ [3]
	[Total: 7]